Palladium-catalyzed coupling reaction of acylzirconocene chlorides with hypervalent iodonium salts: synthesis of aryl-substituted ketones

Suk-Ku Kang* and Seok-Keun Yoon

Department of Chemistry, Institute for Basic Sciences, Sungkyunkwan University, Natural Science Campus, Suwon 440-746, Korea

Received (in Cambridge, UK) 30th November 2001, Accepted 11th January 2002 First published as an Advance Article on the web 24th January 2002

The palladium-catalyzed acylation reaction of alkenoyland alkanoylzirconocene chlorides with hypervalent iodonium salts afforded the acylated aromatic compounds under mild conditions.

Alkenyl- and alkyl substituted acylzirconocene dichlorides, which are stable and readily available complexes through hydrozirconation of alkynes and alkenes with zirconocene hydrochloride (Cp₂ZrHCl, Schwartz reagent),¹ with subsequent insertion of carbon monoxide² are versatile intermediates as "unmasked" acyl anions for the preparation of aldehydes, carboxylic acids, ketols, and alkylketones as developed by Hanzawa and Taguchi and their co-workers.³ Alkyl-substituted acylzirconium chloride as an "unmasked" acyl anion was coupled with iodobenzene and utilizing the palladium-catalyst under harsh conditions at 100 °C for 20 h gave alkyl phenyl ketone in a low (32%) yield. It is necessary to conduct this coupling under milder conditions and to obtain a better yield. In connection with our program to utilize hypervalent iodonium salts in cross-coupling reactions,⁴ we have found that hypervalent iodonium salts are excellent electrophiles in the palladium-catalyzed coupling reaction of alkenyland alkyl-substituted acylzirconocene chlorides, to form arylsubstituted alkyl and vinyl ketones under mild conditions (Scheme 1).

The results of palladium-catalyzed cross-coupling of the acylzirconocene chlorides with hypervalent iodonium salts are summarized in Table 1.

(E)- β -Styrylacylzirconocene chloride prepared *in situ* from phenylacetylene 1a, Cp₂Zr(H)Cl, and carbon monoxide was reacted in the presence of Pd(PPh₃)₄ (5 mol%) at room temperature for 2 h to afford the α , β -unsaturated aromatic ketone $3a^{5}$ in 75% yield (entry 1 in Table 1). Under the same conditions with (p-methoxyphenyl)(phenyl)iodonium tetrafluoroborate (2b) as an electrophile, the *p*-methoxyphenyl substituted α , β unsaturated ketone $3b^6$ was afforded as the sole product in 73% yield (entry 2). This method was applied to the alkenylsubstituted iodonium salt 2c. β-Styrylacylzirconocene chloride generated in situ was treated with alkenyl-substituted iodonium salt 2c to provide dibenzylideneacetone $3c^7$ in 83% yield (entry 3). Alkyl-substituted acetylene 1b was utilized in the hydrozirconation and carbon monoxide insertion followed by the palladium-catalyzed coupling with 2a, 2b, and 2c to give the coupled products 3d,⁸ 3e,⁹ and 3f¹⁰ in 94, 70, and 75% yields, respectively (entries 4-6). Propargyl alcohol methyl ether (1methoxyprop-2-yne) 1c was converted to the corresponding acylzirconocene chloride and then coupled in the presence of palladium catalyst with 2a, 2b, and 2c to furnish 3g,¹¹ 3h,¹¹ and

DOI: 10.1039/b110983a

In summary, the palladium-catalyzed acylation of alkenoyland alkanoylzirconocene and carbonylation was accomplished with hypervalent iodonium salts to afford acylated aromatic compounds under mild conditions.

Experimental

Typical procedure for the synthesis of 1,3-diphenylprop-2-enone 3a

To a stirred solution of Cp₂Zr(H)Cl (469 mg, 1.82 mmol) in dry THF (10 mL) at room temperature under a nitrogen balloon was added phenylacetylene **1a** (93 mg, 0.91 mmol) and the reaction mixture was stirred for 30 min. After the nitrogen balloon was changed to a CO balloon, the mixture was stirred for 2 h at room temperature. To this solution was added diphenyliodonium tetrafluoroborate **2a** (335 mg, 0.91 mmol) and Pd(PPh₃)₄ (53.2 mg, 0.045 mmol) and the reaction mixture was stirred for 2 h. The reaction mixture was extracted with diethyl ether (20 mL × 3) and the organic layer was dried over MgSO₄, and evaporated *in vacuo*. The crude product was separated by SiO₂ column chromatography (hexanes–EtOAc = 10 : 1, $R_f = 0.35$) to give 1,3-diphenylprop-2-enone **3a** (142 mg, 75%).

Acknowledgements

The authors wish to acknowledge the financial support from the National Research Lab (NRL) program and the Korea Research Foundation (KRF0-2000-015-DP0262). KOSEF-CMDS is gratefully acknowledged. S.-K. Yoon acknowledges financial support from the BK21 program.

References

- (a) C. A. Bertelo and J. Schwartz, J. Am. Chem. Soc., 1975, 97, 228;
 (b) J. Schwartz and J. A. Labinger, Angew. Chem., Int. Ed. Engl., 1976, 15, 333;
 (c) J. M. Takacs, Comprehensive Organometallic Chemistry II, eds E. W. Abel, F. G. Stone and G. Wilkinson, Pergamon Press, Oxford, 1995, Vol. 12, pp. 39.
- 2 Reviews: (a) P. Wipf and H. Jahn, *Tetrahedron*, 1996, **52**, 12853; (b) J. A. Labinger, *Comprehensive Organic Synthesis*, eds. B. M. Trost, and I. Fleming, Pergamon Press: Oxford, 1991, Vol. 8, pp. 667. Insertion reactions of CO and isocyanide compounds into alkylzirconocene chloride: (c) C. A. Bertelo and J. Schwartz, *J. Am. Chem. Soc.*, 1975, **97**, 228; (d) E. Negishi, D. R. Swanson and S. R. Miller, *Tetrahedron Lett.*, 1988, **29**, 1631.

Table 1	The p	alladium-o	catalyzed	coupling	of acylz	irconocene	chlorides	with	hypervalent	iodonium	salts
---------	-------	------------	-----------	----------	----------	------------	-----------	------	-------------	----------	-------

Entry	Substrate	Iodonium salts	Products	Isolated yield (%)
1	Рh— <u>—</u> 1а	$Ph_2I^+BF_4^-$ 2a	Ph Ph Ja	75
2	1a	(<i>p</i> -MeO-C ₆ H ₄)I ⁺ PhBF ₄ ⁻ 2b	ph 3b OMe	73
3	1a	$\frac{1}{2c}$	Ph Ph	83
4	<i>п</i> Ви— <u>—</u> 1b	2a	⁰ _n Bu <u>J</u> _{3d}	94
5	1b	2b	nBu 3e OMe	70
6	1b	2c	nBu of ph	75
7	MeO lc	2a	McO Ph	77
8	1c	2b	MeO 3h 0	78
9	1c	2c	MeO Ph	84
10	Ph A	2a	Ph ph Ph	70
11	1d	2b	Ph 3k OMe	69
12	1d	2c	Ph ph ph	72
13	nHex 1e	2a	_{nHex} 3m	68
14	1e	2b	nHex 3n OMe	69
15	1e	2c	nHex Ph	69

3 (a) S. Harada, T. Taguchi, N. Tabuchi, K. Narita and Y. Hanzawa, Angew. Chem., Int. Ed., 1998, 37, 1696; (b) Y. Hanzawa, N. Tabuchi and T. Taguchi, Tetrahedron Lett., 1998, 39, 6249; (c) Y. Hanzawa, and I. Taguchi, *Tetrahedron Lett.*, 1998, 39, 6249; (c) Y. Hanzawa, N. Tabuchi and T. Taguchi, *Tetrahedron Lett.*, 1998, 39, 8141; (d) Y. Hanzawa, N. Tabuchi, K. Saito, S. Noguchi and T. Taguchi, *Angew. Chem., Int. Ed.*, 1999, 38, 2395.
4 (a) S.-K. Kang, S.-H. Lee and D. Lee, *Synlett*, 2000, 1022–1024; (b) S.-K. Kang, S.-K. Yoon and Y.-M. Kim, *Org. Lett.*, 2001, 3, 2002. (c) S. K. Kang, T. Vargarachi, S. J. Para, Y. T. Luc, and Y. S. K. Yang, Y. T. Luc, and Y. Hu, Y. T. Luc, and Y. Y. Luc

T.-G. Baik and A. Kulak, Synlett, 1999, 324-326; (e) S.-K. Kang, 1.-O. Bark and A. Kulak, Syntett, 1999, 524–520, (e) S.-K. Kang,
 H.-W. Lee, S.-B. Jang and P.-S. Ho, J. Org. Chem., 1996, 61, 4720–4724; (f) S.-K. Kamg, T. Yamaguchi, T.-H. Kim and P.-S. Ho,
 J. Org. Chem., 1996, 61, 9082–9083; (g) S.-K. Kang, H.-W. Lee, S.-B.
 Jang, T.-H. Kim and S.-J. Pyun, J. Org. Chem., 1996, 61, 2604–2605.
 S.-K. Kang, P.-S. Ho, S.-K. Yoon, J.-C. Lee and K.-J. Lee, Synthesis, 1007. 222.295

2697-2699; (c) S.-K. Kang, T. Yamaguchi, S.-J. Pyun, Y.-T. Lee and T.-G. Baik, Tetrahedron Lett., 1998, 39, 2127-2130; (d) S.-K. Kamg,

1997, 823-825. 6 F.-Y. Zhang and E.-J. Corey, Org. Lett., 2000, 1097-1100.

- 7 S.-K. Kang, T. Yamaguchi, R.-K. Hong, T.-H. Kim and S.-J. Pyun, Tetrahedron Lett., 1997, 38, 3027-3034.
- 460 J. Chem. Soc., Perkin Trans. 1, 2002, 459-461

- 8 K. Narsaka, H. Kusama and Y. Hayashi, Chem. Lett., 1991, 1413-1416.
- 9 Y. Tamaru, H. Ochiai and Z. Yoshida, *Tetrahedron Lett.*, 1984, **25**, 3861–3864.
- 10 W. F. Goure, M. F. Wright, P. D. Davis, S. S. Labadie and J. K. Stille, *J. Am. Chem. Soc.*, 1984, **106**, 6417–6422.
- 11 J.-B. Verlhac, M. Pereyre and J.-P. Quintard, *Tetrahedron*, 1990, **46**, 6399–6412.
- 12 The spectral and physical data of 6-methoxy-1-phenylhexa-1,4-dien-3-one **3i**: a colourless oil; TLC, SiO₂, EtOAc–hexanes 1 : 3, $R_f = 0.31$; ¹H NMR (500 MHz, CDCl₃) δ 6.72 (d, 1H, J = 16 Hz), 6.98 (d, 2H, J = 16 Hz), 7.40 (m, 3H), 7.57 (m, 2H), 7.67 (d, 1H, J = 16 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 1895, 1443, 143.5, 135.4, 131.2,
- 129.7, 129.0, 128.4, 125.9, 72.2, 59.5; IR (neat) $\nu = 3057, 2932, 2832, 1725, 1665, 1600, 1447, 1333, 1192, 982, 875, 694 cm⁻¹; HRMS calcd. for C₁₃H₁₄O₂: 202.9994; found: 202.9996.$
- 13 S. S. Elmersy, A. S. El-Ahl, H. Soliamn and F. A. Amer, *Tetrahedron Lett.*, 1996, **37**, 2297–2298.
- 14 T. Inoue, T. Sate and I. Kuwajima, J. Org. Chem., 1984, 49, 4671–4674.
- 15 R. Jones and J. R. Nichols, *Tetrahedron Lett.*, 1990, **31**, 1771–1774.
- 16 R. Giovannini, T. Stüdemann, D. Dussin and P. Knochel, Angew. Chem., Int. Ed., 1998, 37, 2387–2390.
- 17 H. Shiraki, K. Nishide and M. Node, *Tetrahedron Lett.*, 1999, **41**, 3437–3444.