
Palladium-catalyzed coupling reaction of acylzirconocene chlorides
with hypervalent iodonium salts: synthesis of aryl-substituted
ketones

Suk-Ku Kang* and Seok-Keun Yoon

Department of Chemistry, Institute for Basic Sciences, Sungkyunkwan University,
Natural Science Campus, Suwon 440-746, Korea

Received (in Cambridge, UK) 30th November 2001, Accepted 11th January 2002
First published as an Advance Article on the web 24th January 2002

The palladium-catalyzed acylation reaction of alkenoyl-
and alkanoylzirconocene chlorides with hypervalent
iodonium salts afforded the acylated aromatic compounds
under mild conditions.

Alkenyl- and alkyl substituted acylzirconocene dichlorides,
which are stable and readily available complexes through
hydrozirconation of alkynes and alkenes with zirconocene
hydrochloride (Cp2ZrHCl, Schwartz reagent),1 with subsequent
insertion of carbon monoxide 2 are versatile intermediates as
“unmasked” acyl anions for the preparation of aldehydes,
carboxylic acids, ketols, and alkylketones as developed by
Hanzawa and Taguchi and their co-workers.3 Alkyl-substituted
acylzirconium chloride as an “unmasked” acyl anion was
coupled with iodobenzene and utilizing the palladium-catalyst
under harsh conditions at 100 �C for 20 h gave alkyl phenyl
ketone in a low (32%) yield. It is necessary to conduct this
coupling under milder conditions and to obtain a better
yield. In connection with our program to utilize hypervalent
iodonium salts in cross-coupling reactions,4 we have found
that hypervalent iodonium salts are excellent electrophiles
in the palladium-catalyzed coupling reaction of alkenyl-
and alkyl-substituted acylzirconocene chlorides, to form aryl-
substituted alkyl and vinyl ketones under mild conditions
(Scheme 1).

The results of palladium-catalyzed cross-coupling of the
acylzirconocene chlorides with hypervalent iodonium salts are
summarized in Table 1.

(E )-β-Styrylacylzirconocene chloride prepared in situ from
phenylacetylene 1a, Cp2Zr(H)Cl, and carbon monoxide was
reacted in the presence of Pd(PPh3)4 (5 mol%) at room tem-
perature for 2 h to afford the α,β-unsaturated aromatic ketone
3a 5 in 75% yield (entry 1 in Table 1). Under the same conditions
with (p-methoxyphenyl)(phenyl)iodonium tetrafluoroborate
(2b) as an electrophile, the p-methoxyphenyl substituted α,β-
unsaturated ketone 3b 6 was afforded as the sole product in
73% yield (entry 2). This method was applied to the alkenyl-
substituted iodonium salt 2c. β-Styrylacylzirconocene chloride
generated in situ was treated with alkenyl-substituted iodonium
salt 2c to provide dibenzylideneacetone 3c 7 in 83% yield (entry
3). Alkyl-substituted acetylene 1b was utilized in the hydro-
zirconation and carbon monoxide insertion followed by the
palladium-catalyzed coupling with 2a, 2b, and 2c to give the
coupled products 3d,8 3e,9 and 3f 10 in 94, 70, and 75% yields,
respectively (entries 4–6). Propargyl alcohol methyl ether (1-
methoxyprop-2-yne) 1c was converted to the corresponding
acylzirconocene chloride and then coupled in the presence of
palladium catalyst with 2a, 2b, and 2c to furnish 3g,11 3h,11 and

Scheme 1

3i 12 in 77, 78, and 84% yields, respectively (entries 7–9). This
coupling method was extended to the substituted alkenes.
The hydrozirconation followed by carbonylation of styrene 1d
gave the alkyl-substituted zirconocene chloride, which readily
coupled with 2a to afford ketone 3j 13 in 70% yield (entry 10).
Under the same conditions with 2b and 2c, 3k 13 and 3l 14 were
afforded (entries 11 and 12). Finally, it is notable that the alkyl-
substituted zirconocene from oct-1-ene 1e, Cp2Zr(H)Cl and
CO coupled with 2a, 2b, and 2c to give 3m,15 3n,16 and 3o 17 in
moderate yield (entries 13–15).

In summary, the palladium-catalyzed acylation of alkenoyl-
and alkanoylzirconocene and carbonylation was accomplished
with hypervalent iodonium salts to afford acylated aromatic
compounds under mild conditions.

Experimental

Typical procedure for the synthesis of 1,3-diphenylprop-2-enone
3a

To a stirred solution of Cp2Zr(H)Cl (469 mg, 1.82 mmol) in dry
THF (10 mL) at room temperature under a nitrogen balloon
was added phenylacetylene 1a (93 mg, 0.91 mmol) and the
reaction mixture was stirred for 30 min. After the nitrogen
balloon was changed to a CO balloon, the mixture was stirred
for 2 h at room temperature. To this solution was added
diphenyliodonium tetrafluoroborate 2a (335 mg, 0.91 mmol)
and Pd(PPh3)4 (53.2 mg, 0.045 mmol) and the reaction mixture
was stirred for 2 h. The reaction mixture was extracted with
diethyl ether (20 mL × 3) and the organic layer was dried over
MgSO4, and evaporated in vacuo. The crude product was
separated by SiO2 column chromatography (hexanes–EtOAc =
10 : 1, Rf = 0.35) to give 1,3-diphenylprop-2-enone 3a (142 mg,
75%).

Acknowledgements

The authors wish to acknowledge the financial support from
the National Research Lab (NRL) program and the Korea
Research Foundation (KRF0-2000-015-DP0262). KOSEF-
CMDS is gratefully acknowledged. S.-K. Yoon acknowledges
financial support from the BK21 program.

References
1 (a) C. A. Bertelo and J. Schwartz, J. Am. Chem. Soc., 1975, 97, 228;

(b) J. Schwartz and J. A. Labinger, Angew. Chem., Int. Ed. Engl.,
1976, 15, 333; (c) J. M. Takacs, Comprehensive Organometallic Chem-
istry II, eds E. W. Abel, F. G. Stone and G. Wilkinson, Pergamon
Press, Oxford, 1995, Vol. 12, pp. 39.

2 Reviews: (a) P. Wipf and H. Jahn, Tetrahedron, 1996, 52, 12853;
(b) J. A. Labinger, Comprehensive Organic Synthesis, eds. B. M.
Trost, and I. Fleming, Pergamon Press: Oxford, 1991, Vol. 8,
pp. 667. Insertion reactions of CO and isocyanide compounds
into alkylzirconocene chloride: (c) C. A. Bertelo and J. Schwartz,
J. Am. Chem. Soc., 1975, 97, 228; (d ) E. Negishi, D. R. Swanson and
S. R. Miller, Tetrahedron Lett., 1988, 29, 1631.

1
PERKIN
C

O
M

M
U

N
IC

A
TIO

N

DOI: 10.1039/b110983a J. Chem. Soc., Perkin Trans. 1, 2002, 459–461 459

This journal is © The Royal Society of Chemistry 2002



Table 1 The palladium-catalyzed coupling of acylzirconocene chlorides with hypervalent iodonium salts

Entry Substrate Iodonium salts Products Isolated yield (%)

1 Ph2I
�BF4

�

2a
75

2 1a (p-MeO-C6H4)I
�PhBF4

�

2b
73

3 1a 83

4 2a 94

5 1b 2b 70

6 1b 2c 75

7 2a 77

8 1c 2b 78

9 1c 2c 84

10 2a 70

11 1d 2b 69

12 1d 2c 72

13 2a 68

14 1e 2b 69

15 1e 2c 69
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